基于PNN网络的油井功图识别方法  被引量:1

Pumping Diagram Identification Based on PNN

在线阅读下载全文

作  者:仲志丹[1] 李鹏辉[1] 郭苗苗[1] 王劲松[1] 

机构地区:[1]河南科技大学机电工程学院,洛阳471003

出  处:《价值工程》2015年第13期118-120,共3页Value Engineering

摘  要:油井功图是油井工况诊断的重要依据,快速准确地识别油井功图对于提高油田作业效率具有重要意义。传统的人工相面法识别示功图无法实现油井工况的实时在线诊断,而BP神经网络法识别准确率较低,因此提出一种基于概率神经网络的油井功图识别方法。该方法通过提取功图数据的面积特征、特征向量和载荷曲线的傅里叶逼近特征作为油井功图的特征值,PNN网络用特征值作为输入对油井工况进行诊断。实验结果表明与BP网络相比使用PNN网络根据功图提取特征进行油井功图识别时能够达到更高的识别效率。The pumping diagram is an important basis of pumping condition diagnosis and it is of great significance to identify the pumping diagram rapidly and accurately for improving the production efficiency. Traditional manual identification of pumping diagram can't realize real-time online pumping fault diagnosis and the accuracy of BP network is too low, therefore proposed a method of pumping diagram recognition based on probabilistic neural network (PNN). The method first extracted eigenvalues of area feature eigenvectors of pumping diagram and flourier approximation eigenvalues of load curve as features for pumping diagram identification. PNN used the features as input for pumping condition diagnosis. The experimental result shows that the method of using PNN to identify pumping diagram based on diagram features can achieve better performance than BP network.

关 键 词:概率神经网络 特征提取 故障诊断 模式识别 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象