检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:仲志丹[1] 李鹏辉[1] 郭苗苗[1] 王劲松[1]
出 处:《价值工程》2015年第13期118-120,共3页Value Engineering
摘 要:油井功图是油井工况诊断的重要依据,快速准确地识别油井功图对于提高油田作业效率具有重要意义。传统的人工相面法识别示功图无法实现油井工况的实时在线诊断,而BP神经网络法识别准确率较低,因此提出一种基于概率神经网络的油井功图识别方法。该方法通过提取功图数据的面积特征、特征向量和载荷曲线的傅里叶逼近特征作为油井功图的特征值,PNN网络用特征值作为输入对油井工况进行诊断。实验结果表明与BP网络相比使用PNN网络根据功图提取特征进行油井功图识别时能够达到更高的识别效率。The pumping diagram is an important basis of pumping condition diagnosis and it is of great significance to identify the pumping diagram rapidly and accurately for improving the production efficiency. Traditional manual identification of pumping diagram can't realize real-time online pumping fault diagnosis and the accuracy of BP network is too low, therefore proposed a method of pumping diagram recognition based on probabilistic neural network (PNN). The method first extracted eigenvalues of area feature eigenvectors of pumping diagram and flourier approximation eigenvalues of load curve as features for pumping diagram identification. PNN used the features as input for pumping condition diagnosis. The experimental result shows that the method of using PNN to identify pumping diagram based on diagram features can achieve better performance than BP network.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.132.105