检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]陕西科技大学,西安710021
出 处:《计算机应用研究》2015年第5期1572-1575,共4页Application Research of Computers
摘 要:针对传统图像修复方法依赖图像的结构特征和基于稀疏表示的图像修复方法未考虑修复过程中的观测噪声的问题,提出了一种基于贝叶斯压缩感知与形态学成分分析的图像修复方法。首先通过形态学成分分析法利用Curvelet和局部离散余弦变换分别稀疏图像的结构和纹理部分,然后用贝叶斯压缩感知得到稀疏系数的分布函数,分别求得分布函数的均值和方差,将两个均值作为结构和纹理稀疏系数的估计,方差作为噪声的估计,最后合并两部分的修复结果获得修复后的图像。仿真结果验证该方法可以提高图像的修复质量。To the question that traditional image inpainting methods depended on the structure characteristics of the image and the image inpainting method based on sparse representation without considering observation noise,this paper introduced an image inpainting method based on Bayesian compressive sensing and morphological component analysis. This algorithm transformed the sparsity for structure and texture with Curvelet and local discrete cosine respectively through morphological component analysis firstly. Then it got the posterior distribution function of the two sparse coefficient through Bayesian compressive sensing. It obtained the mean and the variance of the distribution function. The two means could be used as the estimation of the sparse coefficient for structure and texture of the image,and the variance was the estimation of the noise. Lastly,it obtained the inpainting image after merging the two parts. The emulation results prove that this method can improve the quality of image.
关 键 词:图像修复 形态学成分分析 贝叶斯压缩感知 后验分布
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28