基于用户反馈的时序二部图推荐方法  被引量:1

Title Temporal Bipartite Graph Recommendation Method Based on User Feedback

在线阅读下载全文

作  者:刘欣亮[1] 裴亚辉[1] 

机构地区:[1]河南科技大学软件学院,河南洛阳471003

出  处:《河南大学学报(自然科学版)》2015年第2期229-234,共6页Journal of Henan University:Natural Science

基  金:国家自然科学基金资助(61003234)

摘  要:推荐系统以用户购买行为相似性为基础,而用户购买不仅包括是与否的选择信息,还有其购买时间和购买后对产品的评价信息作为反馈结果.满意商品能正确反映用户兴趣偏好,而很久以前购买和负面评价的商品,则将误导用户兴趣的分析.因此,在传统二部图推荐的基础上加入用户评价和时间衰减因素,提出一种基于用户反馈的时序推荐方法,经过多个数据集上的实验证明,提出方法在不同推荐列表长度的命中率指标上均有较大幅度的提升.Bipartite Graph recommendation methods are based on the similarity of usersshopping behavior,and the resource allocation algorithm is employed to output the recommendation results.In fact,the shopping behavior of users does not simply answer yes or no for the recommendation,but indicates more information.For example,items which users were satisfied with can indicate their interests correctly,as well as the awful shopping experiences mean the users make a wrong decision with the items they have bought.It was the same when the recommendation results came from the items they have purchased several years ago.If we do not consider their feedback information in our recommendation,the results can be confused with users.A recommendation method combined with temporal and rating information based on bipartite graph was proposed in the paper.In the proposed method,the initial weights of items can be allocated adaptively by the usersfeedback,so the recommendation can be correctly and timely.Experiments on several real life datasets show notable improvement on the Top-N hits metric.

关 键 词:推荐系统 二部图 用户反馈 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象