检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学力学与工程学院,四川成都610031
出 处:《西南交通大学学报》2015年第2期388-392,共5页Journal of Southwest Jiaotong University
基 金:国家自然科学基金资助项目(11102170;11102172;51378437);中央高校基本科研业务费专项资金资助项目(2682013CX026)
摘 要:为研究粘弹性悬臂壁板在亚音速气流和非线性运动约束联合作用下的稳定性及非线性颤振,基于Hamilton原理建立了悬臂壁板的运动方程,并采用Galerkin方法将其转化为常微分方程组,在参数平面内研究了系统的颤振失稳及发散失稳边界.采用数值模拟方法并根据不同的运动响应将颤振失稳区划分为3个子区域,研究了颤振失稳区内,系统复杂的运动响应.结果表明:系统出现了颤振失稳;非线性因素系统在颤振失稳后处于极限环运动状态;周期-3运动及周期-5运动会伴随着混沌运动产生;随着动压的增大,系统最后将呈现发散运动.In order to study the stability and nonlinear flutter of a cantilevered viscoelastic plate with nonlinear motion constraints in subsonic flow, the motion equation of the cantilevered plate is established by Hamilton theory. The equation is then transformed to a series of ordinary differential equations using the Galerkin method;the flutter and divergence is addressed and their boundaries are presented in a two-parameter space. The complex nonlinear behavior in the region of flutter instability is investigated using numerical simulations. The flutter region is divided into three subregions according to different types of plate motions. Results show that the plate loses it stability by flutter;the plate undergoes limit cycle motions due to the nonlinearity after flutter instability;period-3 and period-5 motions appear along with chaotic motions;and,with the dynamic pressure increasing,divergent motions occur finally.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7