检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南林业大学林学院,云南昆明650224 [2]中国林业科学研究院资源信息研究所,北京100091
出 处:《林业调查规划》2015年第1期9-14,共6页Forest Inventory and Planning
基 金:国家高技术研究发展计划(863计划;编号:2012AA12A306);国家重点基础研究发展计划(973计划;编号:2013CB733404)
摘 要:山区森林的精细分类一直是遥感研究的一个难点,而利用高光谱技术识别地物和树种具有巨大潜力。山区的AISA Eagle II机载高光谱数据需经过大气校正和地形辐射校正后才能获得准确的树种光谱信息。采用Support Vector Machine(SVM)方法对山区森林按照森林类型以及树种进行分类,分类结果与实测样地数据和CCD高分辨率影像验证表明:利用AISA Eagle II机载高光谱数据对试验区的森林类型区分具有较好的分类结果,总体精度为97.74%;在树种分类方面也同样具有不错的分类潜力,总体精度为92.11%,但在阔叶树种间存在错分、漏分的现象。Accurate classification of mountain forests have always challenged the remote sensing research,however,hyperspectral techniques to identify ground objects and classify tree species have the great research potential. The AISA Eagle II airborne hyperspectral data used in mountain area needs atmospheric correction and topographic radiance correction to get the real spectral characteristic of tree species. By using support Vector Machine(SVM) approach to classify forest types or tree species of mountain forests,the accuracy of classification is test by the field plots data and CCD high resolution images. The results show that the classification of forest types in study area can obtain high accuracy by using AISA Eagle II airborne hyperspectral data,overall accuracy could reach to 97. 74%. The overall accuracy of tree species classification is up to 92. 11%,but some wrong and omission errors are happened when used in broad leave species classification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222