煤矿井下采煤设备工序虚拟化调度方法  被引量:3

Virtualization Scheduling Method for the Process of Coal Mining Equipment in Underground Coal Mine

在线阅读下载全文

作  者:冯亮[1] 

机构地区:[1]西北工业大学管理学院,陕西西安710072

出  处:《计算机仿真》2015年第4期419-423,共5页Computer Simulation

摘  要:针对常用的煤矿井下采煤设备工序调度算法不能很好的实现有序调度,效率低,且出错率高等问题,提出了一种采用VEIT-SAGA的煤矿井下采煤设备工序调度算法。首先分析了产煤矿井下采煤设备工序的特征,采用自组织VEIT对设备进行整合,将高峰采煤时段互相错开的不同采煤设备工序封装在各自的VEIT虚拟机中,部署到同一台物理设备中。其次通过自适应调整函数确保SAGA的遗传控制参数随着个体适应度大小以及群体的分散情况进行自主调整,以提高群体多样性和算法的收敛性,最后采用VEIT-SAGA算法对不同煤矿井下采煤设备工序控制参数进行优化求解,获取最佳的煤矿井下采煤设备工序调度结果。仿真结果表明,调度误差保持在0.06左右,改进算法调度准确率高达95%以上,比传统系统准确率提高了35%左右,是一种高效的煤矿井下采煤设备工序调度方法。A scheduling algorithm for the coal mining equipment process in underground coal mine based on VEIT - SAGA is proposed. Firstly, under complex production, the characteristics of the coal mining equipment process in underground coal mine are analyzed, and self - organizing VEIT is used for equipment integration, the different coal mining equipment processes which are staggered each other at peak period of coal mining are encapsulated in respective VEIT virtual machine to deploy to the same physical device. Then, through the adaptive adjustment function, genetic control parameters of the SAGA along with the size of individual fitness and the disperse situation of populations can be made autonomously adjustment to improve the population diversity and convergence of the algorithm. Finally, the VEIT - SAGA algorithm is used to control parameters'optimization solution of different process of coal mining equipment in underground coal mine and to get the best scheduling results of the process of coal mining equipment in underground coal mine. Simulation results show that the scheduling error remains around 0.06, and the accuracy of this scheduling algorithm reaches above 95%, which is higher than the accuracy of traditional system about 35% , it is a kind of efficient scheduling method for the process of coal mining equipment in underground coal mine .

关 键 词:自适应遗传算法 采煤设备工序 虚拟化设备融合技术 控制参数 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象