两点周期边值问题的紧有限体积方法  被引量:3

Compact finite volume scheme for two point periodic boundary value problem

在线阅读下载全文

作  者:周磊[1] 王同科[2] 

机构地区:[1]天津财经大学珠江学院,天津301811 [2]天津师范大学数学科学学院,天津300387

出  处:《天津师范大学学报(自然科学版)》2015年第2期1-6,共6页Journal of Tianjin Normal University:Natural Science Edition

基  金:国家自然科学基金资助项目(41471001)

摘  要:针对两点周期边值问题提出了一种紧有限体积格式,该格式形成的线性代数方程组具有周期三对角性质,通过变换,将其变为2个三对角方程组,使用追赶法求解,提高了计算效率.利用能量方法证明了格式按照H1半范数和L2范数具有四阶收敛精度,并给出了单元中点值和一阶导数值的高精度后处理计算公式,得到其具有四阶精度.数值算例验证了理论分析的正确性和格式的有效性.A compact finite volume scheme is presented for two point periodic boundary value problem. The linear algebraic system derived by this scheme has periodic tridiagonal property. By eonsructing a transformation, two linear algebraic systems which have tridiagonal property are obtained and can be solved by Thomas method. It is proved that the given scheme is con- vergent with fourth order accuracy with respect to discrete H1 semi-norm and L2 norm by energy method. Furthermore, the post-processing formulae for the numerical value and derivative at the midpoint of every element are obtained, which have fourth order accuracy. Numerical examples verify the correctness of the theoretical analysis and also show the effectiveness of the scheme and its extrapolation.

关 键 词:周期边值问题 紧有限体积格式 收敛精度 误差估计 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象