检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陶剑文[1] Fu-Lai CHUNG 王士同[2,3] 姚奇富[4]
机构地区:[1]浙江大学宁波理工学院信息科学与工程学院,浙江宁波315100 [2]香港理工大学电子计算学系 [3]江南大学数字媒体学院,江苏无锡214122 [4]浙江工商职业技术学院电子与信息工程学院,浙江宁波315012
出 处:《软件学报》2015年第5期977-1000,共24页Journal of Software
基 金:教育部人文社会科学研究规划基金(13YJAZH084);浙江省自然科学基金(LY14F020009);宁波市自然科学基金(2013A610065;2013A610072);香港理工大学基金(G-UA68)
摘 要:稀疏表示因其所具有的鲁棒性,在模式分类领域逐渐得到关注.研究了一种基于稀疏保留模型的新颖领域适应学习方法,并提出一种鲁棒的稀疏标签传播领域适应学习(sparse label propagation domain adaptation learning,简称SLPDAL)算法.SLPDAL通过将目标领域数据进行稀疏重构,以实现源领域数据标签向目标领域平滑传播.具体来讲,SLPDAL算法分为3步:首先,基于领域间数据分布均值差最小化准则寻求一个优化的核空间,并将领域数据嵌入到该核空间;然后,在该嵌入核空间,基于l1-范最小化准则计算各领域数据的核稀疏重构系数;最后,通过保留领域数据间核稀疏重构系数约束,实现源领域数据标签向目标领域的传播.最后,将SLPDAL算法推广到多核学习框架,提出一个SLPDAL多核学习模型.在鲁棒人脸识别、视频概念检测和文本分类等领域适应学习任务上进行比较实验,所提出的方法取得了优于或可比较的学习性能.Sparse representation has received an increasing amount of interest in pattern classification due to its robustness. In this paper a domain adaptation learning (DAL) approach is explored based on a sparsity preserving model, which assumes that each data point can be sparsely reconstructed. The proposed robust DAL algorithm, called sparse label propagation domain adaptation learning (SLPDAL), propagates the labels from labeled points in the source domain to the unlabeled dataset in the target domain using those sparsely reconstructed objects with sufficient smoothness. SLPDAL consists of three steps. First, it finds an optimal kernel space in which all samples from both source and target domains can be embedded by minimizing the mean discrepancy between these two domains. Then, it computes the best kernel sparse reconstructed coefficients for each data point in the kernel space by using ll-norm minimization. Finally, it propagates the labels of source domain to the target domain by preserving the kernel sparse reconstructed coefficients. The paper also derives an easy way to extend SLPDAL to out-of-sample data and multiple kernel learning respectively. Promising experimental results have been obtained for several DAL problems such as face recognition, visual video detection and text classification tasks.
关 键 词:领域适应学习 稀疏表示 标签传播 最大均值差 多核学习
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30