A simulation analysis of performance of both implanted doping and in situ doping ETSOI PMOSFETs  

A simulation analysis of performance of both implanted doping and in situ doping ETSOI PMOSFETs

在线阅读下载全文

作  者:冯帅 赵利川 张青竹 杨鹏鹏 唐兆云 吴次南 闫江 

机构地区:[1]College of Big Data and Information Engineering,Guizhou University [2]Key Laboratory of Microelectronics Devices & Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences

出  处:《Journal of Semiconductors》2015年第4期180-184,共5页半导体学报(英文版)

基  金:supported by the Institute of Microelectronics,Chinese Academy of Sciences

摘  要:Extremely thin silicon on insulator p-channel metal oxide-semiconductor field-effect transistors (PMOSFETs) with implanted doping and in situ doping are analyzed by TCAD simulation. The critical characteris- tic parameters acquired by TCAD simulation are compared with each other to analyze their electrical perfbrmance. The saturated driven currents of implanted doping devices with a 25 nm gate length (Lg) are about 200 ×μA/μm bigger than the in situ doping devices at the same saturated threshold voltage (Vtsat). Meanwhile the drain-induced barrier lowering (DIBL) and saturated subthreshold swings for implanted doping devices are also 30 50 mV/V and 6.3-9.1 mV/dec smaller than those of in situ doping devices at 25 nm Lg and a 9-11 nm thickness of SOl (Tsi), respectively. The shift of Vtsat with Tsi for in situ doping devices with 15 nm Lg is -31.8 mV/nm, whereas that for in situ doping devices is only -6.8 mV/nm. These outcomes indicate that the devices with implanted doping can produce a more advanced and stable electrical performance.Extremely thin silicon on insulator p-channel metal oxide-semiconductor field-effect transistors (PMOSFETs) with implanted doping and in situ doping are analyzed by TCAD simulation. The critical characteris- tic parameters acquired by TCAD simulation are compared with each other to analyze their electrical perfbrmance. The saturated driven currents of implanted doping devices with a 25 nm gate length (Lg) are about 200 ×μA/μm bigger than the in situ doping devices at the same saturated threshold voltage (Vtsat). Meanwhile the drain-induced barrier lowering (DIBL) and saturated subthreshold swings for implanted doping devices are also 30 50 mV/V and 6.3-9.1 mV/dec smaller than those of in situ doping devices at 25 nm Lg and a 9-11 nm thickness of SOl (Tsi), respectively. The shift of Vtsat with Tsi for in situ doping devices with 15 nm Lg is -31.8 mV/nm, whereas that for in situ doping devices is only -6.8 mV/nm. These outcomes indicate that the devices with implanted doping can produce a more advanced and stable electrical performance.

关 键 词:implanted doping in situ doping TCAD simulation PMOSFETS 

分 类 号:TN386[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象