检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《工业工程》2015年第2期28-33,共6页Industrial Engineering Journal
基 金:教育部人文社科规划资助项目(12YJA630199)
摘 要:选择合适的预测模型来预测物流需求,对升级和优化物流产业具有重要的战略意义。常见的物流预测方法有:增长率法、移动平均法、时间序列法等,由于实际的物流预测数据常常具有多指标、非线性、小样本的特点,并且数据中存在冗余指标(噪声),导致在实际应用中,大多数预测方法的预测精度不高,难以保证有效性。针对这类物流预测问题,本文根据粗糙集属性约简中基于差别矩阵的算法,剔除冗余指标,基于约简的属性,改进了单一的SVM预测模型,并用遗传算法优化了SVM模型的输入参数,获得了较高的预测精度。本文给出了该方法的具体步骤,并用实际数据预测了广东省的货运总量,验证了该方法的有效性。Proper forecasting models are of strategic significance for upgrading and optimizing logistical in- dustry. Common forecasting methods include increasing rate method, moving average method, time series method, etc. In real applications, many forecasting methods are not so accurate as to ensure validity be- cause logistical data have such features as multi attributes (including redundant attributes), non -linear, small sample. A method is proposed that eliminates redundant attributes for reduction based on discern- ibility matrix algorithm with rough set theory improving the SVM model and optimizing the input parameters by genetic algorithm. Detailed steps of the forecasting method are provided and validity examined via cargo data of Guangdong province.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44