检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]延安大学数学与计算机科学学院,陕西延安716000
出 处:《安徽大学学报(自然科学版)》2015年第2期8-12,共5页Journal of Anhui University(Natural Science Edition)
基 金:陕西省科技计划项目(2014K15-03-07);延安市科技计划项目(2013-KS03);延安大学研究生教育创新计划项目
摘 要:非线性梁方程描述了桥面竖直平面内的振动.在以往文献的基础上证明了一类非线性梁方程生成的解半群S(t)在全局吸引子Α上是一致可微,其全局吸引子具有有限的分形维数,并进一步应用Sobolev-LiebThirring不等式进行估计,得到全局吸引子的分形维数的上界.The nonlinear beam equations represent the viberation of the rode bed in downward direction .Based on the existence of global attractors in other article ,this paper proved that semigroup S(t) generated by a class of nonlinear beam equation was uniformly differentiable on the global attractor Α.The paper also proved that global attractors of this class of equation have limited fractal dimension .Furthermore ,an estimate was given with the application of Sobolev-Lieb-Thirring inequality and upper bound of fractal dimension of the global attractor is obtained .
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28