检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄南天[1] 张卫辉[1] 蔡国伟[1] 徐殿国[2] 李岩[3]
机构地区:[1]东北电力大学电气工程学院,吉林省吉林市132012 [2]哈尔滨工业大学电气工程及自动化学院,黑龙江省哈尔滨市150001 [3]国网辽宁省电力有限公司抚顺供电公司,辽宁省抚顺市113000
出 处:《电网技术》2015年第5期1412-1418,共7页Power System Technology
基 金:国家自然科学基金项目(51307020);吉林省科技发展计划项目(20150520114JH);吉林市科技发展计划资助项目(201464052)~~
摘 要:噪声干扰是影响电能质量暂态扰动识别准确率的最重要因素。经过S变换后获得的扰动信号的模时–频矩阵具有灰度图像特点。因此,可通过二维数学形态学方法,滤除噪声干扰,获得更高的识别准确率。首先,针对扰动信号时–频分布特点,设计具有不同时–频分辨率的多分辨率快速S变换方法以降低运算量、提高特征表现能力;之后,在阈值滤波基础上,根据信号时–频分布特点,选择线段型、零角度结构元进行灰度级形态学开运算,进一步滤除高频频域噪声;最后,从原始信号、信号傅里叶谱、多分辨率快速S变换模矩阵中提取5种特征建立决策树分类器,识别含噪声信号与6种复合扰动信号在内的12种电能质量信号。通过仿真对比实验发现,新方法具有更好的抗噪能力,更加适用于低信噪比环境下的电能质量信号识别。The noise is the most important factor to affect the recognition accuracy of power quality disturbances. The time-frequency modular matrix obtained from S-transform has the characteristics of gray image. Therefore, the classification accuracy of disturbances can be improved by two-dimensional mathematical morphology de-noising method. Firstly, an improved multi-resolution fast S-transform with different time-frequency resolutions was constructed according to the time-frequency distribution characteristics of modular matrix. It was used to reduce the computation complexity and improve the ability of time-frequency feature presentation. Secondly, morphological open operator with a line type, zero angle structure element was used in the high frequency area of the modular matrix to immune noise affection after threshold filtering. Finally, a decision tree classifier was designed based on five features which were extracted from the original signals, Fourier spectrums of original signals and time-frequency modular matrix of multi-resolution fast S-transform. The new method can recognize the noise signal without disturbances and 12 types of disturbances including 6 types of complex disturbances. The comparison of simulation experiments shows that the new method has better noise immunity and more suitable for disturbances recognition in the noise environments.
分 类 号:TM76[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117