基于联合特征的边缘粒子滤波目标跟踪算法研究  被引量:6

Marginalized particle filter for combined feature target-tracking

在线阅读下载全文

作  者:孟军英[1] 刘教民[2] 韩明[2] 

机构地区:[1]石家庄学院计算机科学与工程学院,石家庄050035 [2]燕山大学信息科学与工程学院,河北秦皇岛066004

出  处:《计算机应用研究》2015年第6期1906-1911,1916,共7页Application Research of Computers

基  金:河北省自然科学基金资助项目(F2012208004);河北省高等学校科学技术研究重点项目(ZD20132013)

摘  要:针对采用单一特征建立的动态空间模型与实际系统差距较大,从而使估计误差增加的问题,通过将系统的状态参数引入颜色特征模型中,与颜色特征参数一起构成系统状态空间向量,提出了一种联合颜色状态特征的优化目标跟踪算法。应用Rao-Blackwellization算法思想,由Kalman线性滤波方法解析处理线性的颜色特征转移和更新过程;而目标位置参数采用粒子滤波进行估计,提高了视频目标跟踪的精度和实时性。通过与其他相似算法的比较实验结果可以看出,算法在环境亮度发生变化、目标遮挡等情况下,仍能够保持较高的跟踪精度,既提高了跟踪系统的鲁棒性,又保证了算法的实时性,优于传统的单一特征视频跟踪算法。In order to improve accuracy of system model and reduce evaluated error resulting, this paper proposed a margina- lized particle filter algorithm with joint characteristic. Depart from color appearance parameters, the location parameter intro- duced into system model as another system state vector. Furthermore, it split the state into two parts:the location parameters, which were estimated stochastically by particle filter, and the color appearance parameters, which were estimated analytically. Both parts were jointly tracked using Rao-Blackwellization technology. Rao-Blackwellization algorithm reduced the dimension of mixed linear/nonlinear system and realizing a higher tracking precision and lower computation complexity. Comparison experi- ment results demonstrate that the proposed algorithm is able to automatically update when ambient brightness and speed of tar- get changes or the target is sheltered. The algorithm is more robustness and real-timeness than the traditional color-based parti- cle filter tracking algorithm.

关 键 词:目标跟踪 边缘粒子滤波 核概率密度估计 卡尔曼滤波算法 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] TP301.6[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象