短裤特征截面曲线的径向基函数神经网络模型构建  被引量:1

Construction of radial basis function neural network models for typical cross section curve of shorts

在线阅读下载全文

作  者:叶晓露[1] 庞程方[1] 金娟凤[1] 邹奉元[1,2] 

机构地区:[1]浙江理工大学服装学院,浙江杭州310018 [2]浙江理工大学浙江省服装工程技术研究中心,浙江杭州310018

出  处:《纺织学报》2015年第5期83-88,共6页Journal of Textile Research

基  金:国家国际科技合作专项项目(2011DFB51570);浙江理工大学研究生创新研究项目(YCX13016)

摘  要:将着装人台进行三维扫描获取点云数据,截取与人体特征部位相对应的短裤特征截面。将原数据坐标点转化为极坐标系下的极角与极径值后,以极角值作为输入向量,极径值作为输出向量,构建短裤特征截面曲线的径向基函数(RBF)神经网络模型,并与反向传播(BP)神经网络、最小二乘法及三次样条函数的拟合效果进行比较。结果表明:神经网络拟合曲线的平均绝对误差比最小二乘法及三次样条函数方法小,仿真输出曲线和原始数据非常接近,且曲线光滑;RBF网络的训练速度更快,所需训练步数少,拟合效率明显优于BP神经网络。Three-dimensional body scanning technique is used to collect point clouds data from the dressed mannequin and capture the shorts' typical cross section that is correspondent to the feature points of body. By changing the original coordinate point to polar angle and polar radius under the polar coordinate system, and taking the polar angle as the input and the polar radius as the output, RBF neural network model of the shorts' typical cross section is established. Then the curve of clothing typical cross section is fitted and the fitting effect is compared with that of BP, least square method and cubic splines. The experiment results show that the mean average absolute percentage error of both neural networks is less than that of least square method and cubic splines. The simulation output curve is very close to original data and the curve is smooth. RBF network has much higher training speed, fewer training steps, and fitting efficiency superior to the BP neural network.

关 键 词:短裤 特征截面 RBF神经网络 曲线拟合 MAT Lab仿真 

分 类 号:TS941.17[轻工技术与工程—服装设计与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象