检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张文林[1] 牛铜[1] 屈丹[1] 李弼程[1] 裴喜龙[1]
机构地区:[1]解放军信息工程大学信息系统工程学院,郑州450002
出 处:《自动化学报》2015年第5期1024-1033,共10页Acta Automatica Sinica
基 金:国家自然科学基金(61403415;61175017)资助~~
摘 要:从语音信号声学特征空间的非线性流形结构特点出发,利用流形上的压缩感知原理,构建新的语音识别声学模型.将特征空间划分为多个局部区域,对每个局部区域用一个低维的因子分析模型进行近似,从而得到混合因子分析模型.将上下文相关状态的观测矢量限定在该非线性低维流形结构上,推导得到其观测概率模型.最终,每个状态由一个服从稀疏约束的权重矢量和若干个服从标准正态分布的低维局部因子矢量所决定.文中给出了局部区域潜在维数的确定准则及模型参数的迭代估计算法.基于RM语料库的连续语音识别实验表明,相比于传统的高斯混合模型(Gaussian mixture model,GMM)和子空间高斯混合模型(Subspace Gaussian mixture model,SGMM),新声学模型在测试集上的平均词错误率(Word error rate,WER)分别相对下降了33.1%和9.2%.Based on nonlinear manifold structure of acoustic feature space of speech signal, a new type of acoustic model for speech recognition is developed using compressive sensing. The feature space is divided into multiple local areas, with each area approximated by a low dimensional factor analysis model, so that in a mixture of factor analyzers is obtained. By restricting the observation vectors to be located on that nonlinear manifold, the probabilistic model of each context dependent state can be derived. Each state is determined by a sparse weight vector and several low-dimensional factors which follow standard Gaussian distributions. The principle for selection of the dimension for each local area is given, and iterated estimation methods for various model parameters are presented. Continuous speech recognition experiments on the RM corpus show that compared with the conventional Gaussian mixture model (GMM) and the subspace Gaussian mixture model (SGMM), the new acoustic model reduces the word error rate (WER) by 33.1%and 9.2%respectively.
分 类 号:TN912.34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145