融合词项关联关系的半监督微博聚类算法  被引量:3

Semi- supervised Microblog Clustering Algorithm Fused with Term Correlation Relationship

在线阅读下载全文

作  者:马慧芳[1] 贾美惠子 袁媛[1] 张志昌[1] 

机构地区:[1]西北师范大学计算机科学与工程学院,兰州730070

出  处:《计算机工程》2015年第5期202-206,212,共6页Computer Engineering

基  金:国家自然科学基金资助项目(61163039;61363058);甘肃省教育厅基金资助项目(2013A-016)

摘  要:针对微博文本内容短、稀疏、高维等特点,提出一种改进的半监督微博聚类算法。该算法利用词项间的关系丰富文本特征,通过定义词项文档间关联关系和词项文档内关联关系揭示词项间语义的关联程度,并由此自动生成有标记的数据来指导聚类过程。对词项先验信息进行成对约束编码,构建基于词项间成对约束的三重非负矩阵分解模型来实现微博的半监督聚类。实验结果表明,该算法可以减少繁琐的人工标记过程,并能高效地进行微博聚类。A novel semi-supervised learning algorithm fully exploring the inner semantic information to compensate for the limited message length is presented. The key idea is to explore term correlation data,which well captures the semantic information for term weighting and provides greater context for short texts. Direct and indirect dependency weights between terms are defined to reveal the semantic correlation between terms. Must-link and cannot-link are encoded as constraints for terms. This paper formulates microblog clustering problem as a semi-supervised non-negative matrix factorization co-clustering framework,which takes advantage of knowledge of features as pair-wise constraints. Extensive experiments are conducted on two real-world microblog datasets. Experimental results show that the effectiveness of the proposed algorithm. It not only greatly reduces the labor-intensive labeling process,but also deeply exploits the hidden information from microblog itself.

关 键 词:微博 词项关联关系 成对约束 半监督聚类 非负矩阵分解 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象