检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北师范大学计算机科学与工程学院,兰州730070
出 处:《计算机工程》2015年第5期202-206,212,共6页Computer Engineering
基 金:国家自然科学基金资助项目(61163039;61363058);甘肃省教育厅基金资助项目(2013A-016)
摘 要:针对微博文本内容短、稀疏、高维等特点,提出一种改进的半监督微博聚类算法。该算法利用词项间的关系丰富文本特征,通过定义词项文档间关联关系和词项文档内关联关系揭示词项间语义的关联程度,并由此自动生成有标记的数据来指导聚类过程。对词项先验信息进行成对约束编码,构建基于词项间成对约束的三重非负矩阵分解模型来实现微博的半监督聚类。实验结果表明,该算法可以减少繁琐的人工标记过程,并能高效地进行微博聚类。A novel semi-supervised learning algorithm fully exploring the inner semantic information to compensate for the limited message length is presented. The key idea is to explore term correlation data,which well captures the semantic information for term weighting and provides greater context for short texts. Direct and indirect dependency weights between terms are defined to reveal the semantic correlation between terms. Must-link and cannot-link are encoded as constraints for terms. This paper formulates microblog clustering problem as a semi-supervised non-negative matrix factorization co-clustering framework,which takes advantage of knowledge of features as pair-wise constraints. Extensive experiments are conducted on two real-world microblog datasets. Experimental results show that the effectiveness of the proposed algorithm. It not only greatly reduces the labor-intensive labeling process,but also deeply exploits the hidden information from microblog itself.
关 键 词:微博 词项关联关系 成对约束 半监督聚类 非负矩阵分解
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.150.251