检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广西民族师范学院数学与计算机科学系,广西崇左532200 [2]广西科技大学学报编辑部,广西柳州545006
出 处:《内蒙古师范大学学报(自然科学汉文版)》2015年第2期179-183,共5页Journal of Inner Mongolia Normal University(Natural Science Edition)
基 金:广西教育厅资助项目(200911LX170)
摘 要:针对一些步态识别算法的局限性,提出了一种基于概率特征的步态识别算法.该算法利用目标轮廓在某位置出现的概率作为特征,来表征行人的行走习惯和姿态.概率特征分为运动概率特征和静态概率特征,分别表征行人的手臂、腿部等的运动特征以及躯干、体型等的静态特征.以概率为特征可以减小噪声对识别的影响,甚至可以弱化行人在行走过程中,因偶尔的较大手臂摆幅或者较大步伐等异常动作给识别带来的消极影响.该算法在CASIA Gait Database B和SOTON数据库上分别进行了实验并与其他算法做了对比,实验结果表明,算法对室外和室内样本都有很好的识别效果.Aiming at the limitation of current gait recognition algorithms,a simple and effective gait features representation method was proposed.The method uses probability that target contour appears in a position as features,to characterize the pedestrians’gait habits and postures.These features are divided into motion probability features and static probability features.Motion probability features represent movement characteristics of the pedestrian’s arms,legs,etc;and static probability features represent static character-istics of the pedestrian’s torso,physique,etc.Based on the probability features,the method can reduce the recognition influence by noise,and even weaken the passive influence that are brought by pedestrians’ abnormal action,for example,large arm swing or greater pace occasionally.This method is evaluated exper-imentally using CASIA Gait Database B and SOTON data set.We compared our method with other resear-ches on these data set.The experimental results demonstrate that this method achieves highly competitive performance with outdoor and indoor dataset.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229