机构地区:[1]Tropical Medicine Institute, Guangzhou University of Chinese Medicine [2]School of life Science, Sun Yat-sen University [3]The Second Affiliated Hospital, Guangzhou University of Chinese Medicine
出 处:《Science China(Life Sciences)》2015年第5期451-465,共15页中国科学(生命科学英文版)
基 金:supported by grants to Zeng Qing Ping from National Natural Science Foundation of China(81273620)
摘 要:Calorie restriction(CR) promotes longevity among distinct organisms from yeast to mammals. Although CR-prolonged lifespan is believed to associate with enhanced respiratory activity, it is apparently controversial for accelerated energy consumption regardless of insufficient nutrient intake. In reconciling the contradiction of less food supply versus much metabolite dispense, we revealed a CR-based mode of dual-phase responses that encompass a phase of mitochondrial enhancement(ME) and a phase of post-mitochondrial enhancement(PME), which can be distinguished by the expression patterns and activity dynamics of mitochondrial signatures. ME is characterized by global antioxidative activation, and PME is denoted by systemic metabolic modulation. CR-mediated aging-delaying effects are replicated by artesunate, a semi-synthetic derivative of the antimalarial artemisinin that can alkylate heme-containing proteins, suggesting artesunate-heme conjugation functionally resembles nitric oxide-heme interaction. A correlation of artesunate-heme conjugation with cytochrome c oxidase activation has been established from adduct formation and activity alteration. Exogenous hydrogen peroxide also mimics CR to trigger antioxidant responses, affect signaling cascades, and alter respiratory rhythms, implying hydrogen peroxide is engaged in lifespan extension. Conclusively, artesunate mimics CR-triggered nitric oxide and hydrogen peroxide to induce antioxidative networks for scavenging reactive oxygen species and mitigating oxidative stress, thereby directing metabolic conversion from anabolism to catabolism, maintaining essential metabolic functionality, and extending life expectancy in yeast.Calorie restriction (CR) promotes longevity among distinct organisms from yeast to mammals. Although CR-prolonged lifespan is believed to associate with enhanced respiratory activity, it is apparently controversial for accelerated energy consumption regardless of insufficient nutrient intake. In reconciling the contradiction of less food supply versus much metabolite dispense, we revealed a CR-based mode of dual-phase responses that encompass a phase of mitochondrial enhancement (ME) and a phase of post-mitochondrial enhancement (PME), which can be distinguished by the expression patterns and activity dynamics of mitochondrial signatures. ME is characterized by global antioxidative activation, and PME is denoted by systemic metabolic modulation. CR-mediated aging-delaying effects are replicated by artesunate, a semi-synthetic derivative of the antimalarial artemisinin that can alkylate heme-containing proteins, suggesting artesunate-heme conjugation functionally resembles nitric oxide-heme interaction. A correlation of artesunate-heme conjugation with cytochrome c oxidase activation has been established from adduct formation and activity alteration. Exogenous hydrogen peroxide also mimics CR to trigger antioxidant responses, affect signaling cascades, and alter respiratory rhythms, implying hydrogen peroxide is engaged in lifespan extension. Conclusively, artesunate mimics CR-triggered nitric oxide and hydrogen peroxide to induce antioxidative networks for scavenging reactive oxygen species and mitigating oxidative stress, thereby directing metabolic conversion from anabolism to catabolism, maintaining essential metabolic functionality, and extending life expectancy in yeast.
关 键 词:calorie restriction nitric oxide ARTESUNATE hydrogen peroxide LONGEVITY Saccharomyces cerevisiae
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...