检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2015年第9期158-163,共6页Computer Engineering and Applications
基 金:国家自然科学基金(No.61172127);高等学校博士学科点专项科研基金(No.20113401110006);安徽省自然科学基金(No.1208085QF104);安徽省高校优秀青年人才基金项目(No.2012SQRL017ZD)
摘 要:为了提高植物叶片图像识别的准确率,提出一种基于差异性值监督局部线性嵌入(D-LLE)算法的多特征植物叶片图像识别方法。该方法提取叶片的颜色、形状和纹理作为叶片多特征,在加权局部线性嵌入(WLLE)算法中引入样本的差异性值构成差异性值监督LLE算法(D-LLE)对叶片高维特征进行降维,在低维空间采用最近邻分类器实现叶片的识别。该方法所用的叶片多特征比单一特征像素值更能描述叶片图像,同时差异性值能够充分挖掘样本的类别信息。基于实拍的叶片图像数据库的实验结果表明,该方法有效提高了叶片的识别精度。A recognition method of multi-feature plant leaves based on dissimilarity-supervised locally linear embedding algorithm is proposed to improve the recognition accuracy in plant leaves recognition. The features of color, shape and tex-ture are extracted as leaves multi-feature, and the sample dissimilarity is brought into weighted locally linear embedding to form the supervised LLE algorithm to reduce leaves multi-feature dimension;the nearest classifier is used to recognize leaves category in low dimension space. The leaves multi-feature are better than pixels to describe leaves, at the same time, dissimilarity can mine sample category information fully. The experimental results based on real plant leaf databases show that the proposed method improves the leaves recognition accuracy effectively.
关 键 词:识别 叶片多特征 监督局部线性嵌入 加权局部线性嵌入 降维 差异性值
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3