检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒲玲[1]
机构地区:[1]宜宾学院计算机与信息工程学院,四川宜宾644007
出 处:《计算机工程与应用》2015年第9期213-216,共4页Computer Engineering and Applications
基 金:国家自然科学基金(No.61202196)
摘 要:奇异值分解(SVD)方法在地震数据去噪中得到了较好的发展。在时间域或频率域进行随机噪声压制时,SVD技术往往对呈现线性模式的水平同相轴有较好的去噪效果。然而,对呈现非线性模式的弯曲同相轴效果不佳,从而限制了其在实际中的应用。为此,提出一种基于局部线性嵌入(LLE)的地震数据随机噪声压制方法,其思想是不考虑LLE方法的降维特性,而仅考虑其重构特性,利用局部线性嵌入的重构思想,对地震数据采样点用其近邻进行重构,得到去除随机噪声后的结果。正演模型及实际资料处理结果对比表明,该方法在有效压制随机噪声的同时,能够较好地保留非线性模式的有效信号,优于常规SVD滤波结果。Singular Value Decomposition(SVD)has a better development in noise reduction for seismic data. SVD can achieve a better result for the horizontal events that show linear models. However, it can not achieve a good result for the curve events that show nonlinear models. This limits in practice. This paper proposes a random noise reduction method for seismic data based on Locally Linear Embedding(LLE). The idea is that it only considers the reconstruction properties of LLE, not considers its properties of dimension reduction. The method uses the reconstruction of Locally Linear Embed-ding to reconstruct each sample of seismic data by its neighborhoods. Then, the results after reducing random noise are obtained. The conducted results on forward model and real seismic data show that the proposed method not only can effec-tively reduce random noise, but also can keep the effective signals that show nonlinear models. And it is better than the SVD filtering result.
关 键 词:局部线性嵌入 地震数据 随机噪声 去噪 奇异值分解 重构
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.252.203