检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州理工大学电气工程与信息工程学院,兰州730050
出 处:《计算机工程与应用》2015年第10期223-226,共4页Computer Engineering and Applications
基 金:甘肃省科技计划资助项目(No.1308RJZA273)
摘 要:针对传统的短时平均幅度差函数(AMDF)法由于出现均值下降趋势,谷点并非全局最低谷点而导致基音周期提取中的倍频和半频错误出现的情况,提出一种改进算法。将传统的AMDF经过经验模式分解(EMD)处理后去掉趋势项重组新的EMDAMDF,再利用短时自相关函数(ACF)对其进行加权,构造新的EMDAMDF/ACF加权平方特征检测该语音帧的基音。仿真结果表明,该方法有效地加强了AMDF的谷值特性提高了基音周期检测的准确率。The traditional method of short time Average Magnitude Difference Function(AMDF)often appears the mean downward trend that leads to finding the valleys which are not global lowest point. It also occurs the halving frequency and the doubling frequency errors in pitch tracking. To resolve this problem and enhance the valley value features, an improved algorithm based on AMDF is proposed in this paper. Firstly, the traditional AMDF is decomposed by using Empirical Mode Decomposition(EMD)and reconstructed after removing the trend component to obtain new EMD-AMDF. Secondly, the improved weighted feature of EMDAMDF/ACF is extracted to detect the speech pitch. Finally, experimental results show that this method can increase the valley features of AMDF and improve the accuracy of pitch detection.
关 键 词:基音周期 平均幅度差函数 经验模式分解 自相关函数
分 类 号:TN912.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.185.140