检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈远方[1] 张熳[1] 王小莉[1] 戎毅[1] 彭海燕[1] 管芳[1]
出 处:《江苏预防医学》2015年第3期23-26,共4页Jiangsu Journal of Preventive Medicine
摘 要:目的:探讨适合全国乙肝发病率的预测模型,为乙肝预测预警系统提供参考。方法应用2004-2012年全国乙肝月发病率数据,分别建立 ARIMA 模型和 BP 神经网络模型,利用建立的模型预测2013年1-12月乙肝发病率,采用实际发病率验证与比较两种模型的预测效果,评价指标为平均绝对误差(MAE)、平均绝对误差率(MER)和非线性相关系数(RNL)。结果全国2004-2013年乙肝月发病率在2.79/10万~9.44/10万间波动,序列具有明显的长期趋势。建立的乘积 ARIMA(0,1,1)(0,1,1)12模型预测的 MAE、MER、RNL 分别为0.445、0.065、0.909,BP 神经网络模型分别为0.635、0.093、0.872。ARIMA 模型预测的平均绝对误差和平均绝对误差率要低于 BP 神经网络模型(△MAE=0.190,△MER=0.028),非线性相关系数要高于BP 神经网络模型(△RNL=0.037)。结论 ARIMA 模型和BP 神经网络模型均适用于我国乙肝发病率的预测,且前者的预测效能和非线性拟合能力略优于后者。Objective To explore suitable prediction models for hepatitis B incidence in China;to provide reference for fore-casting warning system of hepatitis B.Methods ARIMA model and Back-Propagation (BP)neural network model were estab-lished based on monthly incidence of hepatitis B from 2004 to 2012.Predication performance of both models were verified by monthly incidence of hepatitis B in 2013.Mean absolute error(MAE),mean error rate(MER)and nonlinear correlation coeffi-cient(RNL)were used to compare prediction effects of above two models.Results The monthly incidence of hepatitis B from 2004 to 2013 were in the range of 2.79/105 -9.44/105 ,demonstrating obvious long-term trends.The MAE,MER,RNL be-tween actual values and predicted values of the monthly incidence of hepatitis B in 2013 using the fitting ARIMA(0,1,1)(0,1, 1)12 model and BP neural network model were 0.445,0.065,0.909 and 0.635,0.093,0.872,respectively.MAE and MER of ARIMA model were lower than those of BP neural network model(△MAE= 0.190,△MER= 0.028),its RNL was high-er than that of BP neural network model(△RNL=0.037).Conclusion Both ARIMA model and BP neural network model performed well in predicting hepatitis B incidence in China.The prediction and nonlinear fitting ability of ARIMA model was slightly better than those of BP neural network model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145