充换电服务网络动力电池配送最优路径建模方法  被引量:6

Modeling method for battery distribution path optimization of EV charging and swapping service network

在线阅读下载全文

作  者:刘晓胜[1] 张芮[1] 朱宏林[1] 王娟[1] 

机构地区:[1]哈尔滨工业大学电气工程及自动化学院,黑龙江哈尔滨150001

出  处:《电力自动化设备》2015年第6期10-16,共7页Electric Power Automation Equipment

摘  要:以配送网络中实际道路的路径长度、交通堵塞系数和道路等级合成等效加权道路长度最小为目标函数,建立了抢修车路径规划的数学模型。考虑总路程和超时成本,建立了配送车路径规划的数学模型。在传统的蚁群优化算法中引入惩罚因子,并简化了其转移概率计算方法,以提高算法的速度和效率。利用改进的蚁群优化算法求解模型。仿真结果表明,改进的蚁群优化算法可以适应动态变化的路网,有效、快速地解决充换电服务网络动力电池配送最优路径选择问题。A mathematical model with the equivalent path length as its object function is built for the recovery vehicle path planning,which considers the actual path length,traffic congestion coefficient and road grade of distribution network. Meanwhile,a mathematical model with the minimum cost as its object function is built for the delivery vehicle path planning,which considers the total path length and timeout. A punishment factor is introduced to the traditional ant colony optimization algorithm and its transfer probability calculation method is simplified to inlprove its speed and efficiency,which is used to solve the models. The simulative results show that,the improved ant colony optimization algorithm adapts to the dynamic change of road network and selects the optimal path efficiently and quickly for the battery distribution of EV charging and swapping service network.

关 键 词:电动汽车 动力电池配送 动态路网 蚁群算法 最优路径 充换电服务网 

分 类 号:TM721[电气工程—电力系统及自动化] U469.72[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象