分数域反褶积Gabor谱图地震信号谱分解  被引量:3

Deconvolution-fractional Gabor spectrogram for seismic signal spectral decomposition

在线阅读下载全文

作  者:田琳[1,2] 彭真明[1] 张启衡[3] 

机构地区:[1]电子科技大学光电信息学院,四川成都610054 [2]伊犁师范学院电子与信息工程学院,新疆伊宁835000 [3]中国科学院光电技术研究所,四川成都610209

出  处:《石油地球物理勘探》2015年第2期219-224,1,共6页Oil Geophysical Prospecting

基  金:国家自然科学基金项目(41274127,41301460,40874066)资助

摘  要:应用Gabor谱图可以将地震信号映射到二维时频域,可提供地震信号的频率随时间的变化规律。然而Gabor谱图的分辨率受到海森堡不确定原理的限制,时频分辨率较低。为此,本文将分数域自适应的最优窗函数引入Gabor谱图,得到分数域Gabor谱图。为了提高分数域Gabor谱图的时频分辨率,将自适应最优窗函数的Wigner-Ville分布(WVD)作为点扩散函数(PSF),再由分数域Gabor谱图和PSF做反褶积得到分数域反褶积Gabor谱图,同时给出了反褶积分数域Gabor谱图的计算方法和计算复杂度分析。测试信号和实际地震信号的谱分解结果都证明了分数域反褶积Gabor谱图在提高信号时频分辨率方面的优势。Gabor spectrogram can transform seismic signals into 2D time-frequency domain. However,Gabor spectrogram is suffered from Heisenberg uncertain principle and its resolution is low.In this paper we propose deconvolution-fraction Gabor spectrogram.We first introduce the fractional optimal window function into Gabor spectrogram and develop the fractional Gabor spectrogram.Then we show the deconvolution of image processing technique used in time-frequency analysis for improving time-frequency resolution,and use the Wigner-Ville distribution(WVD)of fractional optimal window as point spread function(PSF)to show more accurately the instantaneous frequency of the signal components.Finally we conduct the deconvolution between fractional Gabor spectrogram and the PSF and obtain the deconvolutionfraction Gabor spectrogram.As the fractional optimal window function is adaptive according the signal,the resolution of deconvolution-fraction Gabor spectrogram is higher.To reduce the computation cost,the PSF is shrunken into a small effective area.Synthetic and real seismic data tests are evaluated to demonstrate the performance of the deconvolution-fraction Gabor spectrogram.

关 键 词:分数阶傅里叶变换 Gabor谱图 反褶积 时频分辨率 谱分解 

分 类 号:P631[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象