检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州交通大学自动化与电气工程学院,甘肃兰州730070
出 处:《传感器与微系统》2015年第6期156-160,共5页Transducer and Microsystem Technologies
摘 要:针对传统图像增强方法中图像细节丢失、图像对比度不明显以及方法普适性差等缺点,提出了一种自适应免疫遗传算法用于图像增强。该算法与传统遗传算法的不同在于引入免疫算子抑制优化过程中出现的退化现象,根据个体适应度自适应调整遗传算子的概率值和基因变异位数,从而增强了种群多样性,提高了算法快速性和全局收敛性。实验结果表明:基于该算法的图像增强具有图像细节清楚、对比度强、方法普适性强等优点。Aiming at disadvantages in traditional image enhancement methods,such as disappearance of image detail,unsharp image contrast and poor method universality,propose an image enhancement method based on adaptive immune genetic algorithm( AIGA). The differences between AIGA and standard genetic algorithm( SGA) are that the former restrains degradation phenomena appeared in the process of optimization by introducing the immune operator,and the probability of genetic operator and the digits of gene mutation are varied adaptively depending on the fitness of individual,thus improving the performance in population diversity,searching speed and global convergence. Experimental results show that the proposed algorithm can make the image detail clearly,make the contrast enhancement,and has strong universality.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49