On universal sums of polygonal numbers  被引量:4

On universal sums of polygonal numbers

在线阅读下载全文

作  者:SUN Zhi-Wei 

机构地区:[1]Department of Mathematics, Nanjing University

出  处:《Science China Mathematics》2015年第7期1367-1396,共30页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.11171140);the PAPD of Jiangsu Higher Education Institutions

摘  要:For m = 3, 4,..., the polygonal numbers of order m are given by pm(n) =(m- 2) n2 + n(n= 0, 1, 2,...). For positive integers a, b, c and i, j, k 3 with max{i, j, k} 5, we call the triple(api, bpj, cpk)universal if for any n = 0, 1, 2,..., there are nonnegative integers x, y, z such that n = api(x) + bpj(y)+ cpk(z). We show that there are only 95 candidates for universal triples(two of which are(p4, p5, p6) and(p3, p4, p27)), and conjecture that they are indeed universal triples. For many triples(api, bpj, cpk)(including(p3, 4p4, p5),(p4, p5, p6) and(p4, p4, p5)), we prove that any nonnegative integer can be written in the form api(x) + bpj(y) + cpk(z) with x, y, z ∈ Z. We also show some related new results on ternary quadratic forms,one of which states that any nonnegative integer n ≡ 1(mod 6) can be written in the form x2+ 3y2+ 24z2 with x, y, z ∈ Z. In addition, we pose several related conjectures one of which states that for any m = 3, 4,...each natural number can be expressed as pm+1(x1) + pm+2(x2) + pm+3(x3) + r with x1, x2, x3 ∈ {0, 1, 2,...}and r ∈ {0,..., m- 3}.For m = 3, 4,..., the polygonal numbers of order m are given by pm(n) =(m- 2) n2 + n(n= 0, 1, 2,...). For positive integers a, b, c and i, j, k 3 with max{i, j, k} 5, we call the triple(api, bpj, cpk)universal if for any n = 0, 1, 2,..., there are nonnegative integers x, y, z such that n = api(x) + bpj(y)+ cpk(z). We show that there are only 95 candidates for universal triples(two of which are(p4, p5, p6) and(p3, p4, p27)), and conjecture that they are indeed universal triples. For many triples(api, bpj, cpk)(including(p3, 4p4, p5),(p4, p5, p6) and(p4, p4, p5)), we prove that any nonnegative integer can be written in the form api(x) + bpj(y) + cpk(z) with x, y, z ∈ Z. We also show some related new results on ternary quadratic forms,one of which states that any nonnegative integer n ≡ 1(mod 6) can be written in the form x2+ 3y2+ 24z2 with x, y, z ∈ Z. In addition, we pose several related conjectures one of which states that for any m = 3, 4,...each natural number can be expressed as pm+1(x1) + pm+2(x2) + pm+3(x3) + r with x1, x2, x3 ∈ {0, 1, 2,...}and r ∈ {0,..., m- 3}.

关 键 词:polygonal numbers ternary quadratic forms representations of integers PRIMES 

分 类 号:O156[理学—数学] O178[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象