检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]信息工程大学信息系统工程学院 [2]解放军65021部队
出 处:《西安交通大学学报》2015年第6期60-66,共7页Journal of Xi'an Jiaotong University
基 金:国家自然科学基金资助项目(61271104)
摘 要:针对传统最小均方误差逐幸存路径处理(LMS-PSP)单通道盲分离算法在时变信道下性能差的问题,提出一种基于基扩展模型逐幸存路径处理(BEM-PSP)的单通道盲分离算法。首先对接收到的部分混合信号进行LMS-PSP单通道盲分离,得到部分准确的信道冲激响应(CIR);然后结合时变信道下基于基扩展模型进行信道估计的思想,完成整个时间周期CIR的估计;最后采用Viterbi算法对混合信号进行序列估计,从而实现时变信道下混合信号的单通道盲分离。仿真结果表明,对于2路混合QPSK信号,在相同仿真条件下,BEM-PSP算法较LMS-PSP算法能降低50%的复杂度且能获得更好的性能,在20dB处的误码率可达4×10-2,而LMS-PSP单通道盲分离算法的误码率只能达到1×10-1,并且在同等过采样倍数下,该算法能获得更高的性能提升。A new algorithm based on basis expansion model per-survivor processing(BEM-PSP)is proposed to overcome the poor performance of the traditional least mean square per-survivor processing(LMS-PSP)algorithm for single channel blind separation in time-varying channels.First,aportion of accurate channel impulse response(CIR)is obtained through processing a portion of received mixed signals.Then,estimations of the CIR during the whole time period is accomplished by combining the channel estimation using the basis expansion model.Finally,the Viterbi algorithm is applied to estimate sequences to the mixed signals,and the single channel blind separation of the mixed signals is accomplished.Simulation results and a comparison with the LMS-PSP single channel blind separation algorithm in same simulation conditions show that the complexity of the proposed algorithm reduces by 50% with better performance in processing mixed QPSK signals,and that the proposed algorithm achieves a bit error rate of 4×10-2 while the LMS-PSP algorithm only achieves a bit error rate of 1×10-1 when the signal to noise ratio is20 dB.It is also observed that the proposed algorithm obtains a higher performance improvement with the same oversampling ratio.
关 键 词:单通道 盲分离 逐幸存路径处理 基扩展模型 Viterbi序列估计
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3