基于模糊遗传算法的埋入式电阻热布局优化  被引量:4

Thermal placement optimization of embedded resistances by fuzzy genetic algorithm

在线阅读下载全文

作  者:邓莉[1] 李天明[2] 黄春跃[3] 张瑞宾[2] 庞前娟[1] 黄伟[3] 

机构地区:[1]桂林航天工业学院电子工程系,广西桂林541004 [2]桂林航天工业学院汽车工程系,广西桂林541004 [3]桂林电子科技大学机电工程学院,广西桂林541004

出  处:《电子技术应用》2015年第6期51-54,58,共5页Application of Electronic Technique

基  金:国家自然科学基金项目(51465012);广西自然科学基金项目(2013GXNSFAA019322;2012GXNSFAA053234);广西教育厅科研项目(YB2014435);桂林航天工业学院科研项目(Y12Z034)

摘  要:针对标准遗传算法优化埋入式电阻热布局存在的过早收敛等问题,通过设计适应度函数、采用模糊逻辑控制器自适应调整交叉概率和变异概率,以及对长时间未进化的种群实施局部灾变等措施维持种群多样性,使算法最终收敛于全局最优解。仿真结果表明,该算法能够更好地抑制早熟收敛,算法优化布局结果的温度分布更平均,并通过热成像仪对实验样件进行温度分布测试验证了算法的有效性。Aiming at the premature convergence problem of the standard genetic algorithm (SGA) for thermal placement opti- mization of embedded resistances, a series of measures were taken to maintain the population diversity and search the global opti- mization solution, such as the fitness function design, the crossover and the mutation probabilities adaptive adjustment by the fuzzy logic controller (FLC), and the local catastrophe operation intervention when the population hadn't evolved for a long time. The MATLAB results show that this method can suppress the premature convergence better, and the finite element analysis(FEA) simula- tion results indicate that its thermal placement optimization result has more equal temperature distribution. The effectiveness of the algorithm was verified by testing the temperature distribution of experimental samples using the thermal imager.

关 键 词:埋入式电阻 热布局优化 模糊遗传算法 早熟收敛 有限元分析 

分 类 号:O224[理学—运筹学与控制论] TN305.94[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象