基于星敏感器指向的船载雷达轴系误差分离模型  被引量:6

Error Separation Model for Shaft Parameters of Ship-borne Radar Based on Pointing of Star Sensor

在线阅读下载全文

作  者:张同双[1,2] 钟德安[1] 潘良[1,2] 焦宏伟[1,2] 王二建[1] 

机构地区:[1]中国卫星海上测控部,江苏江阴214431 [2]飞行器海上测量与控制联合实验室,江苏江阴214431

出  处:《电讯技术》2015年第5期516-521,共6页Telecommunication Engineering

摘  要:针对现有船载雷达动态标校方法的不足,提出了一种基于星敏感器的船载雷达轴系误差标校方法。该方法以精确的星敏感器地平指向为比对基准,解算船载雷达的轴系误差。设计了基于星敏感器的船载雷达动态标校方案,分析了船摇测量误差对雷达测角精度的影响,推导了天线座垂向变形引起的雷达测角误差修正模型。根据测量目标的不同,分别建立了联合测星与跟踪目标时的船载雷达轴系误差分离模型。最后通过联合测星试验对轴系误差分离模型进行了验证。试验结果表明,利用动态标校成果修正后的船载雷达方位、俯仰系统残差分别为3″和9″,随机残差分别为40″和45″,满足雷达轴系误差标定要求,具有较高的实用价值。In view of the deficiency of existing dynamic calibration methods for ship-borne radar,a shaft parameter calibration method for ship-borne radar based on star sensor is proposed. This method calculates the shaft parameters of ship-borne radar by taking the precise horizontal orientation of star sensor as com-parison basis. A dynamic calibration scheme of ship-borne radar based on star sensor is designed,the in-fluence of ship swing measurement error on radar angle measurement precision is analyzed and the angle measurement error correction model of radar antenna pedestal deformation is derived. According to the dif-ferent measuring targets,the error separation models for shaft parameters of ship-borne radar in joint meas-uring star and tracking target are founded respectively. By the experiment of joint measuring star,the error separation model for shaft parameters is verified. Experimental results show that,by using the dynamic cali-bration results,the rectified system residuals of ship-borne radar azimuth angle and pitch angle are 3”and 9”,the random errors are 40” and 45”,respectively. The results meet the technical requirements and the model is valuable in practice engineering applications.

关 键 词:船载雷达 星敏感器 轴系误差 动态标定 误差分离 

分 类 号:TN953[电子电信—信号与信息处理] V556.5[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象