检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津海量信息技术有限公司,天津100029 [2]中国科学院深圳先进技术研究院,深圳518055 [3]中山大学信息科学与技术学院,广州510006
出 处:《集成技术》2015年第3期69-78,共10页Journal of Integration Technology
基 金:深圳市知识创新计划基础研究项目(JCYJ20130401170306838)
摘 要:以短文本为主体的微博等社交媒体,因具备文本短、特征稀疏等特性,使得传统文本分类方法不能够高精度地对短文本进行分类。针对这一问题,文章提出了基于词项关联的短文本分类方法。首先对训练集进行强关联规则挖掘,将强关联规则加入到短文本的特征中,提高短文本特征密度,进而提高短文本分类精度。对比实验表明,该方法一定程度上减缓了短文本特征稀疏特点对分类结果的影响,提高了分类准确率、召回率和F1值。Due to its characteristics of shortness and sparseness, short text, as the main body of microblog and other social media, cannot be accurately classified by the traditional text classification methods. To solve this problem, a method of short text classification based on association rules of lexical items was proposed in this paper. Firstly, the training set based on the strong association rules was mined, and then the strong association rules was added to the features of short text so as to increase the feature density of short text, thereby to increase the accuracy of results of short text classification. Comparative experiments show that this method, to some extent, reduces the impact of sparseness of short text on the classification results, and it improves the classification accuracy, recall values and F1 values.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3