检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《现代雷达》2015年第6期26-31,共6页Modern Radar
基 金:国家自然科学基金资助项目(60702015)
摘 要:针对冲击噪声环境下压缩感知雷达参数估计性能急剧下降的问题,提出一种新的鲁棒性参数估计方法。首先,根据压缩感知雷达参数估计的稀疏线性模型,基于Lorentzian范数和L1范数稀疏正则化构造冲击噪声背景下稀疏重构的混合LL2-L1范数优化模型;然后,利用迭代加权最小二乘法和阈值收缩函数推导上述模型优化求解的一步迭代公式;最后,从理论上对文中算法的收敛性进行证明,并给出算法计算复杂度的定量分析。计算机仿真实验表明,文中算法在冲击噪声下支撑集的重构更精确、重构信号的精度更高、重构的计算量更小。In the presence of impulsive noise, the degeneracy of the robustness of most existing sparse recovery algorithms results in a sharp decline in the performance of parameter estimation for compressed sensing radar (CSR). In this paper, a novel robust parameter estimation method used in impulsive noise environment-LTSIRLS (Lorentzian based Threshold-Shrinkaged IRLS) was proposed. Firstly, the mixed LL2-L1 optimization model for sparse recovery under impulsive noise environment was built based on Lorentzian constrained L1 regularization. Secondly, the iterative formulation was deduced by exploiting the IRLS ( Iteratively Reweighted Least Squares) and the threshold-shrinkage function. Thirdly, the convergence property of the proposed algorithm was theoretically proved and the computational complexity was quantitatively analyzed. It is verified that the proposed method results in more accurate support and signal recovery, smaller computational burden.
关 键 词:压缩感知雷达 冲击噪声 Lorentzian范数 优化求解
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.225.66