检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《西北大学学报(自然科学版)》2015年第3期352-356,共5页Journal of Northwest University(Natural Science Edition)
基 金:国家自然科学基金资助项目(11371291);陕西省教育厅科研计划基金资助项目(11JK0506);宝鸡文理学院校级重点科研计划基金资助项目(ZK12044)
摘 要:利用熵函数将非线性方程组转化为一个极小值优化问题。结合拟牛顿法和遗传算法的优缺点,提出了一种求解非线性方程组的拟牛顿混合遗传优化算法。该方法不仅有效发挥了遗传算法在进化初期的群搜索能力,而且利用了拟牛顿法的局部精搜索性能,克服了遗传算法在后期易陷入局部收敛的缺陷,提高了算法整体寻优效率。计算机仿真表明,该算法对非线性方程组的求解具有较好的稳定性和较高的收敛精度。First, the nonlinear system of equations was transformed into a minimum optimal problem by using an entropy function. And combining the Quasi-Newton method with the genetic algorithm, a Quasi-Newton hy- brid genetic algorithm for solving the nonlinear system of equations is proposed. The proposed algorithm can not only utilize the swarm search ability of genetic algorithm in the initial evolution stage, but also take advan- tage of the local search property of the Quasi-Newton, and these have made the proposed algorithm overcome the local convergence of genetic algorithm in the later evolution stage and improved the overall search ability of the proposed algorithm. The computer simulations demonstrate the proposed algorithm has good stability and convergence precision in solving the nonlinear system of equations.
分 类 号:O224[理学—运筹学与控制论] TP301.6[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158