基于时延差特征参数判别的牛顿迭代振源定位搜索算法  

Newton iterative source localization search algorithm based on the time delay difference characteristic parameters discrimination

在线阅读下载全文

作  者:冯立杰 樊瑶[2] 

机构地区:[1]武警工程大学信息工程系,西安710086 [2]西藏民族学院信息工程学院,咸阳712000

出  处:《科技导报》2015年第12期83-87,共5页Science & Technology Review

基  金:国家自然科学基金项目(60940007)

摘  要:时差定位系统的定位精度,主要受时间差测量和传感器几何分布的影响。由于受环境的复杂性、目标的移动性和定位的实时性制约,时延差准确与否一直是困扰研究人员的问题。本文提出一种基于信号特征参数判别的时延差误差估计方法,应用该方法分别对牛顿迭代搜索定位算法的搜索初值和结束条件进行了改进:首先利用各传感器的特征信息,确定各传感器信号的信度;其次,选择3个可信度高的传感器进行目标定位,其结果作为牛顿迭代搜索的初值,避免了传统方法确定初值的复杂繁琐的计算;第三,将各传感器的信度作为牛顿迭代搜索结束条件的权值,使得结束条件更合理、更贴近实际。实验证明了本算法定位精度高、鲁棒性强。The positioning accuracy of the TDOA location system is mainly influenced by the time difference measurement and the " sensor geometry distribution. For the real-time positioning, due to the mobility and the complexity caused by the environmental goal control, the reasonable, efficient and accurate determination of the measured time delay difference is a plagued issue for researchers. To solve this problem, this paper proposes a method to estimate the error signal delay discrimination based on characteristic parameters. The Newton iterative search algorithm is improved to search for the initial positioning and the end condition. Firstly, the signal characteristic value information is used to establish credibility, then the initial position of the source is found through three sensors of high reliability, its results are taken as the initial values of Newton iteration to avoid the complicated calculation of the traditional method. Finally, with the reliability of each sensor as the weight of the Newton iteration termination condition, the end condition is more reasonable, more close to reality. The experiment shows that this algorithm has high precision and strong robustness.

关 键 词:粗大时延误差 牛顿迭代 传感器信度 定位精度 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构] TP212[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象