检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Tian Wei Mei Dongqi Li Pengcheng Zeng Yuanfan Hong Peng Zhou Wei
出 处:《Chinese Journal of Aeronautics》2015年第3期946-953,共8页中国航空学报(英文版)
基 金:co-supported by the National Natural Science Foundation of China(No.51475225);the Aeronautical Science Foundation of China(No.2013ZE52067)
摘 要:Abstract Industrial robots are used for automatic drilling and riveting. The absolute position accuracy of an industrial robot is one of the key performance indexes in aircraft assembly, and can be improved through error compensation to meet aircraft assembly requirements. The achiev- able accuracy and the difficulty of accuracy compensation implementation are closely related to the choice of sampling points. Therefore, based on the error similarity error compensation method, a method for choosing sampling points on a uniform grid is proposed. A simulation is conducted to analyze the influence of the sample point locations on error compensation. In addition, the grid steps of the sampling points are optimized using a statistical analysis method. The method is used to generate grids and optimize the grid steps of a Kuka KR-210 robot. The experimental results show that the method for planning sampling data can be used to effectively optimize the sampling grid. After error compensation, the position accuracy of the robot meels the position accuracy require- ments.Abstract Industrial robots are used for automatic drilling and riveting. The absolute position accuracy of an industrial robot is one of the key performance indexes in aircraft assembly, and can be improved through error compensation to meet aircraft assembly requirements. The achiev- able accuracy and the difficulty of accuracy compensation implementation are closely related to the choice of sampling points. Therefore, based on the error similarity error compensation method, a method for choosing sampling points on a uniform grid is proposed. A simulation is conducted to analyze the influence of the sample point locations on error compensation. In addition, the grid steps of the sampling points are optimized using a statistical analysis method. The method is used to generate grids and optimize the grid steps of a Kuka KR-210 robot. The experimental results show that the method for planning sampling data can be used to effectively optimize the sampling grid. After error compensation, the position accuracy of the robot meels the position accuracy require- ments.
关 键 词:Aircraft assembly Error compensation Positioning accuracy ROBOTICS Sampling grid
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.91.115