检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东中医药大学理工学院,山东济南250355 [2]山东中医药大学药学院,山东济南250355
出 处:《辽宁中医杂志》2015年第6期1303-1305,共3页Liaoning Journal of Traditional Chinese Medicine
基 金:国家重点基础研究发展计划(973计划)资助项目(2007CB512601);山东中医药大学2013年"名科工程"青年骨干培养计划(ZYDXY1301)
摘 要:目的:探讨中药寒热药性与所含脂类相关性。方法:取寒性、热性中药各30种,提取粗脂并按1 m L/0.1g加入2%硫酸-甲醇在70℃下甲酯化,GC-MS联用测定脂类图谱,并利用5种判别分析方法进行药性判别建模。结果:SVM方法优于其它判别方法,组内判别一致率为100%,5折交叉验证正确率53.2%,测试集预测率58.3%。结论:中药寒热药性与脂类成分存在一定相关性,脂类是中药药性的物质基础之一;SVM可以作为判别中药寒热药性的辅助工具。Objective : To discuss the correlation between cold-heat natures and lipid. Methods : We extracted lipid from 60 tra- ditional Chinese medicines (TCM). The lipid was determined by pulsing 2% sulfuric acid -methanol as 1 mL/0. 1 g, and methyl etherification under 70℃ water bath. After that, the study data was determined by GC - MS method. Finally the results were ana- lyzed by 5 well-known classification methods. Results : Statistical simulation showed that SVM model had higher sensitivity than the other models. In SVM model, discrimination consistent rate in the group was 100% ,5 fold cross -validation accuracy 53.2%, prediction rate was 58.3% in test set. Conclusion:The SVM could distinguish the cold and heat natures of TCM. There is a certain correlation between cold - heat natures and lipid. In addition, the lipid is one of the material base of natures of TCM.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222