基于MLSE和可拓理论的液压泵故障模式识别  

Fault Model Identification of Hydraulic Pump Based on MLSE and Extension Theory

在线阅读下载全文

作  者:马济乔 李洪儒[1] 许葆华[1] 

机构地区:[1]军械工程学院,河北石家庄050003

出  处:《机床与液压》2015年第11期182-187,共6页Machine Tool & Hydraulics

基  金:国家自然科学基金资助项目(51275524)

摘  要:提出了一种新的衡量时间序列复杂度的方法——多尺度局部最大样本熵(Multiscale Local-maximum Sample Entropy,简称MLSE),与多尺度熵相比,MLSE抑制了振动信号中的噪声和干扰成分,同时又提高了每个时间尺度上样本熵的计算精度。将液压泵不同状态下的MLSE作为特征向量,利用可拓理论进行故障模型识别,并将其与另外两种方法进行对比,结果表明该方法故障识别准确率最高、耗时最短,验证了该方法的优越性。A new method was proposed which is multiscale local-maximum sample entropy (MLSE) to measure the complexity of time series. The noise and interference of vibration signals were suppressed by it, at the same time, the precision of sample entropy on each time scale was improved as compared with multi-scale entropy. By treated the MLSE of hydraulic pump under different status as feature vectors, the extension theory was applied to the fault model identification, and it was compared with the other two methods. The results show that the fault identification rate of this method is the highest, and it takes the shortest time, so the superiority of this meth- od is verified.

关 键 词:液压泵 模式识别 多尺度 可拓理论 

分 类 号:TH322[机械工程—机械制造及自动化] TP306.3[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象