改进的基于逆模型的旅游信息资源索引算法  

Improvement of Tourism Information Resources Index Algorithm Based on Inverse Model

在线阅读下载全文

作  者:林烨秋[1] 张运波[1] 

机构地区:[1]琼州学院计算机工程学院,海南三亚572022

出  处:《科技通报》2015年第6期100-102,共3页Bulletin of Science and Technology

基  金:2014年三亚市院地科技合作项目(2014YD22)

摘  要:在云计算构建下实现对旅游信息的优化调度,提高旅游资源数据的开发和利用效率.传统的旅游信息资源采用经验模态分解的调度算法,通过人工分区实现信息资源的调度模型具有随机性和无组织性,资源分配效率不高.提出一种基于逆模型参数预失真估计的云计算架构下旅游信息资源优化调度模型.设计旅游资源信息调度网络,云计算构架的逆模型网络结构采用BP网络的输出结构,训练包括前向传播信息,反向传播误差两个过程.设计循环堆栈的约束指向矢量,使旅游资源信息调度网络的路由节点的资源分配输出误差最小.采用三亚的5个旅游景点作为研究对象,以2003~2014年度的游客数据作为模型参量,仿真结果表明,模型对旅游资源的融合性能较好,有效剔除簇内非相干数据,提高数据融合效率,分层调度融合度能达到90%以上,优化调度性能优越.To realize the optimization of scheduling in cloud computing on tourism information construction, improve the de?velopment of tourism resources and the utilization efficiency of data. Scheduling algorithm of empirical mode decomposition using traditional tourism information resources, through the scheduling model of artificial partition to realize information re?source is random and has no organization, resource allocation efficiency is not high. Presented a method for calculating the tourism information resource optimization scheduling model under the framework of distortion estimation inverse model pa?rameters based on pre cloud. Design of tourist resources information scheduling network, output structure of cloud inverse network structure model computing architectures using BP network, training including prior to the dissemination of informa?tion. Using 5 tourist attractions in Sanya as the research object, to 2003~2014 annual visitors data as the model parame?ters, simulation results show that the fusion performance model of tourism resources better, effectively eliminate the intra cluster coherent data, improve the efficiency of data fusion, a hierarchical scheduling fusion degree can reach above 90%, the optimal scheduling of superior performance.

关 键 词:云计算 资源调度 经验模态分解 预失真估计 

分 类 号:TN722.75[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象