关于COOK算例的数值解  被引量:4

On Numerical Solution of Cook's Problem

在线阅读下载全文

作  者:胡圣荣[1] 喻菲菲[2] 

机构地区:[1]华南农业大学工程基础教学与训练中心,广东广州510642 [2]广东技术师范学院机电学院,广东广州510635

出  处:《广州城市职业学院学报》2015年第2期54-57,共4页Journal Of Guangzhou City Polytechnic

摘  要:COOK算例没有理论解,文献中常用的参考解与大量优秀单元的计算解有较明显差别,影响了对单元性能的客观公正评价。为获得更准确、更可靠的计算解,分别用4-40次高次元和Q8、T6、QM6低次元进行逼近,考察算例的有限元渐进收敛解。结果表明,在5位有效数字下该问题的解为vC=23.967,σAmax=0.23687,σBmax=-0.20352。With no theoretical solution found with Cook' s problem, numerical solution is used for it, but the commonly used one often shows obvious difference with those of large number of outstanding elements, which affects objective and fair evaluation to the element performance. In order to obtain more accurate and reliable numerical solution, high-order elements of 4-40 order and low-order elements of QS, T6, Qm6 are used to investigate this problem' s progressive convergence solution respectively. Results show that the problem' s solution in five significant digits is vC = 23.967, sAmax = 0.23687, sBmin = -0.203 52.

关 键 词:COOK问题 COOK梯形梁 单元性能测试 

分 类 号:O242.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象