检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]平顶山学院计算机科学与技术学院
出 处:《微型电脑应用》2015年第6期26-28,共3页Microcomputer Applications
摘 要:针对量子蚁群算法求解组合优化问题时易陷入局部最优和收敛速度慢的问题,提出一种基于非合作博弈模型的量子蚁群算法(quantum ant colony algorithm based on non-cooperative game theory,NGQACA),采用重复博弈模型,在重复博弈中产生一个博弈序列,使得每次博弈都能够产生最大效益,并得到了相应博弈过程的纳什均衡。利用三个典型的标准测试函数对此算法进行实验测试,实验结果表明本文基于非合作博弈模型的量子蚁群算法的收敛精度和稳定性均要优于量子蚁群算法(quantum ant colony algorithm,QACA)和蚁群算法(ant colony algorithm,ACA)。Quantum ant colony algorithm is easy to fall into the situation of local optimum and slow convergence rate when solving combinatorial optimization problem. This paper puts forward a quantum ant colony algorithm based on non-cooperative game theory(NGQACA). Adopted in this algorithm, the repeated game model can produce a game sequence to make every game produce maximum benefit, and then it can get the corresponding game process of Nash equilibrium. The there typical test functions are used for testing the performance of NGQACA algorithm optimization. The experimental results show that the convergence precision and stability of NGQACA are better than QACA and ACA algorithm.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30