检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:牟丹[1] 王祝文[1] 黄玉龙[2] 许石[1] 周大鹏[1]
机构地区:[1]吉林大学地球探测科学与技术学院,长春130026 [2]吉林大学地球科学学院,长春130061
出 处:《地球物理学报》2015年第5期1785-1793,共9页Chinese Journal of Geophysics
基 金:国家重点基础研究发展计划项目(2012CB822002);中国石油天然气股份有限公司科学研究与技术开发项目(2012E-3001)联合资助
摘 要:辽河盆地东部坳陷储集层由火山多期喷发形成,岩相岩性复杂,岩性以中、基性火山岩为主.本文将火山岩的岩心及岩矿鉴定资料与测井数据进行整合,应用测井数据建立支持向量机(SVM)两分类和多分类岩性识别模式.首先,深入研究支持向量机二分类及"一对一"、"一对多"和有向无环图三种经典多分类算法的基本原理及结构;然后,总结研究区域火山岩岩石特征,分析测井数据的测井响应组合特征,选择40口井中岩心分析和薄片鉴定资料完整、常规五种测井曲线(RLLD,CNL,DEN,AC,GR)齐全的1200个测井数据作为训练样本,构造三种支持向量机岩性识别模式;最后,对4测试井中800个测井数据进行岩性识别,识别结果与取心段岩心描述和岩心/岩屑薄片鉴定资料对比,实验结果表明有向无环图更适合辽河盆地火山岩的识别,识别正确率达到82.3%.The eastern depression in Liaohe Basin has the geologic characteristic of multiphase volcanic eruption and complicate lithofacies/lithology.The reservoir is made up of intermediate and basaltic volcanic rock.The lithology of volcanic rock is the basis of precise reservoir evaluation which is also the major task of logging evaluation.In complex reservoirs,it is a challenge to classify the lithology of volcanic rock by using the existing methods based on well logging data.On the basis of core,rock-mineral determination material and well logging data,we apply binary support vector machine(SVM)and multiclass support vector machine to identify volcanic rock lithology.The classical SVM is a binary classifier,whereas we often have to solve problems involving multiclass classification.Firstly,the principle of binary and three multiclass SVM of ‘oneagainst-rest',‘one-against-one'and ‘directed acyclic graph'were analyzed.Secondly,on the basis of compensated neutron logging(CNL),density logging(DEN),acoustic logging(AC),deep lateral resistivity log(RLLD)and gamma ray logging(GR)from 40 wells,with a total of1200 logging data in Liaohe Basin,China,we construct the binary support vector machine model to classify volcanic rock and non-volcanic rock.The method of cross validation and grid searching algorithm were adopted to optimize the penalty factor and kernel parameter of SVM.Then,we expend binary model to multiclass model by ‘one-against-rest',‘one-against-one'and ‘directed acyclic graph'(DAG),and construct multiclass models to classify 6types of volcanic rocks,which consist of basalt,non-compacted basalt,trachyte,non-compacted trachyte,gabbro and diabase.According to the geological core data,we compare the three multiclass SVM models,and calculate their accuracy rate,taking 4 wells with a total of 800 logging data for example.We compare the identification result with core analysis and cutting description,the calculating result indicated the accuracy rate of DAG method reac
关 键 词:支持向量机 辽河东部坳陷 火山岩 岩性识别 测井响应
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248