基于微波遥感极化目标分解的土地覆盖/土地利用分类  被引量:14

Land cover/land use classification based on polarimetric target decomposition of microwave remote sensing

在线阅读下载全文

作  者:马腾[1] 王耀强[1] 李瑞平[1] 李彪[1] 

机构地区:[1]内蒙古农业大学水利与土木建筑工程学院,呼和浩特010018

出  处:《农业工程学报》2015年第2期259-265,共7页Transactions of the Chinese Society of Agricultural Engineering

基  金:国家自然科学基金地区科学基金资助项目(51169016);内蒙古自治区科技计划项目(20140153);内蒙古自治区水利科技项目(NSK201403)

摘  要:为有效利用微波遥感影像进行土地覆盖/土地利用分类,该研究以内蒙古河套灌区解放闸灌域为研究区域,采用春耕后试验区Radarsat-2全极化数据,利用极化目标分解方法提取得到了散射熵、平均散射角、反熵、平均特征值、单次反射特征值相对差异度、二次反射特征值相对差异度。结合实地数据,分析了各参数对于耕地、裸地、含植被水体、建筑等类别的可分离性。根据分析结果选取平均散射角、平均特征值、单次反射特征值相对差异度为分类特征变量,通过最小距离法计算了决策边界,最后结合树分类器对试验区影像进行了分类。整体分类精度93.89%,分类Kappa系数为0.914。结果表明,利用平均散射角可有效区分表面散射与二次散射及体散射;平均特征值可有效区分含植被水体与建筑物;单次反射特征值相对差异度参数可有效区分耕地与裸地。利用极化目标分解方法结合决策树分类器可精确地进行土地覆盖/土地利用分类。The objective of this study is to combine polarimetric target decomposition and decision tree classifier for land cover/land use classification. Taking the Jiefangzha irrigation sub-district of Inner Mongolia Hetao Irrigation District as study area, based on the data of full polarization Radarsat-2 in study area after spring, the entropy, average scattering angle, anti entropy, average eigenvalue, characteristic value of relative difference of single reflection, and characteristic value of relative difference of secondary reflection were obtained by using polarization target decomposition method. Combined with the field data in the time of image acquisition, the separability of parameters on building area, bare land, cultivated land, water area containing vegetation was analyzed. The ground sample’s mean values of the above parameters were calculated. By analyzing the mean of these parameters, the results show that the average scattering angle, the average eigenvalue, and characteristic value of relative difference of single reflection can be used for the characteristic quantities of classification. The decision tree decision boundary is determined by the minimum distance method. If the average scattering angle is greater than 36.61°, the area is divided into building area and water area containing vegetation, if not, is divided to bare land and cultivated land. In the building area and water area containing vegetation, if the average eigenvalue is greater than 0.18, the pixel is classified as building area, if not, the pixel is classified as water area containing vegetation. In the bare land and cultivated land, if the characteristic value of relative difference of single reflection is greater than 0.89, the pixels is divided into cultivated land, or else bare land area. The overall accuracy of image classification by decision tree is 93.89% and Kappa coefficient is 0.914. The results show that the average scattering angle can be used to accurately distinguish the single scattering, volume scattering an

关 键 词:土地利用 遥感 分类 分类器 决策 目标分解 

分 类 号:S127[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象