检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广州华侨医院计算机中心,广州510630 [2]中山大学软件学院,广州510275
出 处:《计算机工程与应用》2015年第11期175-178,共4页Computer Engineering and Applications
基 金:广东省自然科学基金项目(No.9151009001000045)
摘 要:针对单一PCA或PCA只能提取掌纹的线性或非线性特征,单一分类器的掌纹识别率低缺陷,提出一种子空间特征融合的两级掌纹识别方法(PCA-KPCA-SVM)。首先采用子空间特征提取方法 PCA、KPCA分别提取掌纹图像线性和非线性特征,然后基于融合特征总类间距离最大准则,计算出最佳的融合系数,得到PCA、KPCA的融合掌纹特征,最后将融合特征输入到欧式距离分类器进行掌纹识别,如果拒绝识别,则输入支持向量机进行二次识别。采用Polyu掌纹图像库进行测试实验,结果表明,相对于对比算法,PCA-KPCA-SVM提高了掌纹识别率,有效降低了掌纹的误识率和拒识率。Principal Component Analysis(PCA)or Kernel Principal Component Analysis(KPCA)can only extract the linear or nonlinear features of palmprint, and single classifier recognition rate is very low, this paper proposes a two level classifier for palmprint recognition based on subspace features. Firstly, the PCA and KPCA are used to extract the linear or nonlinear features of palmprint, respectively, and the best fusion coefficient can be calculated by making the total distance of between-classes largest to get the optimal features of palmprint image, the Euclidean distance metric method is used to recognize palmprint image, if the palmprint image category is clearly, the recognition result is obtained, otherwise the palmprint image is put into support vector machine to recognize. Polyu palmprint image library is used to test the performance, the results show that, compared with other palmprint recognition methods, the proposed method has improved the palmprint recognition rate and recognition speed, and false accept rate and false reject rate are reduced.
关 键 词:掌纹识别 核主成分分析 欧式距离 支持向量机 特征提取
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249