检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:FANG ShouWen XU HaiFeng ZHU Peng
机构地区:[1]School of Mathematical Science, Yangzhou University [2]School of Mathematics and Physics, Jiangsu University of Technology
出 处:《Science China Mathematics》2015年第8期1737-1744,共8页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.11401514,11371310,11101352 and 11471145);Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant Nos.13KJB110029 and 14KJB110027);Foundation of Yangzhou University(Grant Nos.2013CXJ001 and 2013CXJ006);Fund of Jiangsu University of Technology(Grant No.KYY13005);Qing Lan Project
摘 要:Let (M,g(t)) be a compact Riemannian manifold and the metric g(t) evolve by the Ricci flow. We derive the evolution equation for the eigenvalues of geometric operator --△φ+ cR under the Ricci flow and the normalized Ricci flow, where A, is the Witten-Laplacian operator, φ∈C∞(M), and R is the scalar curvature with respect to the metric g(t). As an application, we prove that the eigenvalues of the geometric operator are nondecreasing along the Ricci flow coupled to a heat equation for manifold M with some Ricci curvature 1 condition when c 〉1/4.Let(M, g(t)) be a compact Riemannian manifold and the metric g(t) evolve by the Ricci flow. We derive the evolution equation for the eigenvalues of geometric operator-△φ+ c R under the Ricci flow and the normalized Ricci flow, where △φis the Witten-Laplacian operator, φ∈ C∞(M), and R is the scalar curvature with respect to the metric g(t). As an application, we prove that the eigenvalues of the geometric operator are nondecreasing along the Ricci flow coupled to a heat equation for manifold M with some Ricci curvature condition when c >14.
关 键 词:EIGENVALUE Witten-Laplacian Ricci flow
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249