检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长沙理工大学计算机与通信工程学院,长沙410114
出 处:《计算机工程》2015年第7期269-273,共5页Computer Engineering
基 金:湖南省教育厅科学研究基金资助重点项目(13A107);湖南省科技计划基金资助项目(2014FJ6047;2013FJ4033;2014GK3030);长沙市科技计划基金资助项目(K1207027-11)
摘 要:在传统的Hough变换虹膜图像分割方法中,虹膜图像易受到外界因素影响而造成分割不准确。针对该问题,提出一种虹膜图像分割方法。采用阈值法和Hough变化的方法检测出瞳孔中心,Harris角点检测法得出左眼角,使用稀疏和低秩分解的批量对齐算法对已分类标记的图像进行处理,使其具有低秩特性。对处理后的图像应用边缘检测和Hough变换相结合的方法实现人眼虹膜的分割。与传统的Hough变换方法进行实验对比,结果表明该方法能有效地去除因遮挡形成的噪声,从而提高虹膜定位的精确度。To address the problem of segmenting the iris inaccurately in Hough transform when iris images are corrupted by the eyelids, eyelashes and deformation, an improved method of iris image segmentation based on image alignment is presented. The proposed method uses threshold and Hough transform to locate the center of pupil and applies Harris corner detection algorithm to estimate the left corner of eye. And it employs the robust alignment by sparse and low-rank decomposition algorithm to deal the labeled images with the two detected points, to make it have the low-rank feature. The proposed method uses edge detection and Hough transform method on the processed images to segment the iris accurately. Experimental results show that compared with Hough transform, this method can effectively remove the eyelids and eyelashes occlusion, and improve the accuracy of iris localization.
关 键 词:HOUGH变换 图像对齐 虹膜图像分割 HARRIS角点检测 低秩 边缘检测
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117