检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:覃爱淞[1] 张清华[1] 孙国玺[1] 胡勤[1] 邵龙秋[1]
机构地区:[1]广东石油化工学院广东省石化装备故障诊断重点实验室,广东茂名525000
出 处:《上海应用技术学院学报(自然科学版)》2015年第2期114-117,共4页Journal of Shanghai Institute of Technology: Natural Science
基 金:国家自然科学基金资助项目(61473094;61174113);广东省战略性新兴产业核心技术攻关资助项目(2012A090100019)
摘 要:为可靠地检出并识别旋转机械设备轴承故障,提出了一种基于小波包分解和无量纲免疫检测器的轴承故障模式识别方法.该方法采用小波包对原始时域信号进行预处理,分别提取原始时域信号和各频带范围内时域信号的无量纲指标,并计算其敏感因子,根据敏感因子选取敏感特征,结合人工免疫阴性选择算法,生成多个敏感特征无量纲免疫检测器,实现对故障进行识别和分类.仿真实验结果表明,所提方法能有效地识别各种轴承故障.In order to check and identify bearing fault of rotating machines reliably, a pattern recognition method for bearing fault diagnosis based on wavelet packet decomposition and dimensionless immune detector was presented. Wavelet packet decomposition was presented as a pro-processing tool for the original time domain signal, then the dimensionless indicators of the original time domain signal and the various bands signals were extracted separately, and the sensitivity factor of each indicator was calculated, and the sensitive feature was determined by their value. Combined with artificial immune systems negative selection algorithm, several dimensionless immune detectors of sensitive features were constructed to identify and classify bearing fault. The simulation experiment results showed that the methods were effective to identify various kinds of bearing fault.
分 类 号:TH165.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104