检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《发电设备》2015年第4期252-255,共4页Power Equipment
摘 要:应用神经网络中的径向基函数(RBF算法)及支持向量机算法(SVM算法),分别对某电厂再热器左右两侧汽温进行建模,并对结果进行分析。结果表明:两种人工智能技术都有快速建模的特点,但在精度上,RBF算法比只靠交叉验证进行参数寻优的SVM算法更精确。Reheat steam temperatures on both sides of the reheater in a power plant were modeled using the radial basis function (RBF) in neural networks and the algorithm of support vector machine (SVM), after which the calculation results were analyzed. Results show that both the artificial intelligence technologies have the features of rapid modeling and high precision. However, in terms of accuracy, RBF algorithm is superior to SVM algorithm, because SVM algorithm only relies on cross validation in optimization of parameters.
分 类 号:TK223.73[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.219