N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury  被引量:1

N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

在线阅读下载全文

作  者:Christian Witzel Werner Reutter G.Bj?rn Stark Georgios Koulaxouzidis 

机构地区:[1]Plastic and Reconstructive Surgery,Interdisciplinary Breast Center,Charité–Universit?tsmedizin Berlin [2]Institute of Laboratory Medicine,Clinical Chemistry and Pathobiochemistry,Charité–Universit?tsmedizin Berlin [3]Department of Plastic and Hand Surgery,University of Freiburg Medical Centre

出  处:《Neural Regeneration Research》2015年第6期976-981,共6页中国神经再生研究(英文版)

摘  要:Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-awl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P 〈 0.005) and the number of arborizing axons (21% vs. 16%; P = 0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-awl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P 〈 0.005) and the number of arborizing axons (21% vs. 16%; P = 0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

关 键 词:N-propionylmannosamine sialic acid GLYCOENGINEERING sciatic nerve peripheral nerve branching arborisation Thyl-YFP mouse nerve regeneration 

分 类 号:R651.3[医药卫生—外科学] R-332[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象