检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《声学技术》2015年第3期209-213,共5页Technical Acoustics
基 金:国家自然科学基金(11374241);陕西省自然科学基金(2012JM1010)资助项目
摘 要:特征提取是水下目标识别研究中最为关键的技术之一,特征参数的优劣将直接决定分类识别系统的性能。将声信号的听觉与视觉感知特征结合,应用于水下目标识别,通过实验得出如下结论,相比于单独应用听觉特征,融合特征的平均识别率能提高4%~6%以上,特别是将听觉特征与声谱图的Gabor小波变换特征、灰度-梯度共生特征进行融合后,分类性能较好,平均达到87%以上。Feature extraction is one of the most important techniques of underwater targets recognition. Feature parameters directly determine the performances of classification systems. In this paper, a joint method which combines the auditory and visualized feature extraction methods is proposed and applied to underwater target recognition after feature selection and fusion. Experimental results show that fusion features achieve a better performance than a single audio feature, and the enhancement of recognition rate is 4%~6%, and that the fusion of audio feature with gray gradient co-occurrence matrix and Gabor small wave exchange feature can obtain an even better performance and the recognition rate is over 87%.
关 键 词:水下目标识别 听觉特征 可视化 图像特征 特征选择
分 类 号:TB561[交通运输工程—水声工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222