检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《弹箭与制导学报》2015年第3期37-40,共4页Journal of Projectiles,Rockets,Missiles and Guidance
摘 要:针对使用基于网格划分策略的改进人工鱼群算法计算无人机路径规划问题中寻优精度与算法计算量的矛盾,提出一种改进人工鱼群算法,该算法引入自适应步长和执行概率自适应分段网格遍历策略。算法前期用较大步长全局搜索较优路径,后期用较小步长及网格分段遍历策略在较优解附近进行局部遍历得到更精确最优解。仿真结果表明所提改进人工鱼群算法比原始鱼群算法和自适应步长人工鱼群算法结果更精确、稳定,较基于简单网格划分策略的人工鱼群算法计算量更小。To resolve the conflict between precision and workload in path planning of an UAV with artificial fish-swarm algorithm based on gridding method, an improved artificial fish-swarm algorithm was presented. The proposed algorithm introduces adaptive step length method and adaptive gridding segmented traversal method. In early iteration, the proposed algorithm calculates with large step length, later calcu- lates with narrowed step length and gridding segmented traversal method to find a better solution around a defective solution. The simulation result shows that the proposed artificial fish-swarm algorithm is more accurate and more stable than basic artificial fish-swarm algorithm or adaptive step length artificial fish-swarm algorithm and has large advantage on workload over artificial fish-swarm algorithm based on grid- ding method.
分 类 号:V279[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249