一种基于属性测度的改进时域融合识别方法  

An Improved Approach of the Time Domain Fusion Based on the Attribute Measurement

在线阅读下载全文

作  者:陈光辉[1] 宋小梅[1] 

机构地区:[1]南京电子技术研究所,南京210039

出  处:《现代雷达》2015年第7期41-43,57,共4页Modern Radar

摘  要:基于时域融合的辐射源识别方法提高了单个传感器的识别准确度。文中提出了一种采用属性测度法获取基本概率赋值函数(BPAF),同时应用D-S(Dempster-Shafer)证据理论将多个量测周期识别结果进行有效融合的方法。该方法通过对已知辐射源库中的样本训练,获取样本特征参数的统计分布和权重来计算BPAF。当辐射源库中样本模式较多时,由于引入了统计的思想,在低信噪比情况下的正确识别率较其他时域融合方法得到提高。此外,由于大量的计算在样本识别之前已经完成,融合识别的速度很快。仿真和实验表明该算法是一种实时、有效的辐射源识别方法。The method of emitter recognition based on the fusion in time domain improves the accuracy of single sensor. A new method to calculate the basic probability assignment function( BPAF) with attribute measurement is proposed. Further,D-S( DempsterShafer) evidence theory is applied to refuse the recognition results with multiple measuring circles in this method. By samples training to known emitter base,the BPAF can calculate through the statistical distributions of characteristic parameters of samples and weights. Because of introducing the statistical thought,the accuracy of recognition compared to other methods is improved in the lower signal-to-noise ratio while samples are multiple. Furthermore,a lot of calculation is finished before recognition,so the speed of recognition is fast. The results of experiments and simulation indicate that the recognition method is real-time and effective.

关 键 词:辐射源识别 属性测度 证据理论 

分 类 号:TN971[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象